Illegal Drugs Diffusion in the Philippines: Exploring the Use of SIR Model

Abstract

The study deals with the issue of illegal drugs spread or diffusion in the country. Itattempts to use a mathematical model to explain how the drug spread/diffusion is describedand analyzed. It specifically (a) determines the patterns and themes found in the simulatedand actual interactions of actors/variables to produce optimal interactions and scenarios;(b) predicts, using the SIR model, whether illegal drug spread/diffusion will continue toproliferate or will it fade; and (c) recommends policies based on the patterns and scenariosdeveloped in the study. Findings showed that using the SIR model there were three possiblescenarios whereby the drug diffusion in the country might be explained. Using existingdata and applying the SIR model result showed that drug spread/diffusion in the countrywas decreasing. The study recommends that the concerned authorities may use the SIRmodel, in conjunction with other qualitative methods, in determining and predicting drugdiffusion in the country. Further, it may employ alternative or supplementary policies toaddress (a) drug prevention activities that protect the susceptible population, (b) causes ofdrug infection/use, and (c) effective drug rehabilitation to prevent relapses.
Keywords: Drug Abuse, Drug Diffusion, Drug spread, epidemiological model, SIR model

References

References
Anderson, R.M. & May, R.M. (1991). Infectious
diseases of humans, dynamics, and control.
Oxford University Press.
Bailey, N.T.J. (1975). The mathematical theory
of infectious diseases and its applications
(2nd ed). Hafner Press.
33
Behrens, D.A., Caulkins, J.P., Tragler, G.,
Haunschmied, J.L., & Feichtinge, G.
(1999). A dynamic model of drug
initiation: Implications for treatment and
drug control. Math Biosci, 159, 1-20.
Brauer, F., Castillo-Chavez, C. (2000).
Mathematical models in population biology
and epidemiology.Springer.
Dangerous Drug Board. Reported cases by type
of admission and sex (Facility-based)
2010-2017. Retrieved from https://www.
ddb.gov.ph/45-research-and-statistics
Diekmann, O. & Heesterbeek, J. (2000).
Mathematical epidemiology of infectious
diseases. John Wiley & Son, Ltd.
Hethcote, H.W. (1989). Three basic
epidemiological models. In
(Biomathematics) Applied Mathematical
Ecology, Levin, S.A., Hallam, T.G. and
Gross, L.J. (Eds.). Springer-Verlag Berlin
Heidelberg.
Human Rights Watch.(2020). Philippines:
Events of 2018. In World Report 2019.
Retrieved from https://www.hrw.org/
world-report/2019/country-chapters/
philippines
Kermack, W.O. & McKendrick, A.G. (1927).
A contribution to the mathematical
theory ofepidemics, Proceedings of Royal
Society of London. 115, (1927), 700–721.
Retrieved from http://dx.doi.org/10.1098/
rspa.1927.0118
Liu, J. & Zhang, T. (2011).Global behaviour of
a heroin epidemic model with distributed
delays. Applied Math Lett, 24, 1685-1692.
Mackintosh, D.R. & Stewart, G.T. (1979). A
mathematical model of a heroin epidemic:
Implications for control policies. Journal
of Epidemiology and Community Health,
33, 299-304.
Mushanyu, J., Nyabadza, F., & Stewart, A.G.
(2015a).Modelling the trends of inpatient
and outpatient rehabilitation for
methamphetamine in the Western Cape
province of South Africa. BMC Res Notes,
8: 797. DOI: 10.1186/S133104-015-1741-
4. p.1-13.
Mushanyu, J., Nyabadza, F., Muchatibaya, G., &
Stewart, A.G. (2015). Modelling multiple
relapses in drug epidemics. Springer.
DOI:10.1007/s11587-015-0241-0.
Murray, J.D. (2004). Mathematical biology I and
II. Springer.
National Drug Report. (2017). Retrieved from
https://azdoc.site/2017-national-drugreport.html
Nyabadza, F. & Hove-Musekwa, S.D.
(2010). From heroin epidemics to
methamphetamine epidemics: Modelling
substance abuse in a South African
Province. Math Biosci, 225, 132-140.
PADS.(2018). The Philippine anti-illegal drugs
strategy. Retrieved from https://www.
ddb.gov.ph/images/downloads/Revised_
PADS_as_of_Nov_9_2018.pdf
Philippine Drug Enforcement Agency. Antidrug campaign report, #RealNumbersPH.
Retrieved from http://pdea.gov.ph
Ratchagar, N.P. & Subramanian, S.P. (2015).
SIR model of seasonal epidemic diseases
using ham, applications and applied
mathematics: An International Journal
(AAM), 10(2), 1066-1081.
UNODC.(2009). Political declaration and plan
of action on international cooperation
towards an integrated and balanced
strategy to counter the world drug
problem. Retrieved from https://www.
unodc.org/documents/commissions/
CNN/CND_Sessions/CND_52/PoliticalDeclaration2009_V0984963_E.pdf
UNODC(2013). The international drug control
conventions. Retrieved on June 01, 2019,
from https://www.unodc.org/documents/
commissions/CND/Int_Drug_Control_
Conventions/Ebook/The_International_
Drug_Control_Conventions_E.pdf
UNODC(2017). World drug report,2017.
Retrieved from https://www.unodc.org/
wdr2017/en/topics.html
Weiss, H. (2013). The SIR model and the
foundations of public health. MATerials
MATemàtics, 2013, treball 3: 17. ISSN:
1887-1097 Publicacióelectrònica
de divulgació del Departament de
Matemàtiques de la UniversitatAutònoma
Illegal Drugs Diffusion in the Philippines: Exploring the Use of SIR Model
34 Asia Pacific Journal of Social and Behavioral Sciences Volume 17 2020
de Barcelona. Retrieved from www.mat.
uab.cat/matmat
White, E., Comiskey, C. (2007). Heroin
epidemics, treatment and ODE Modelling.
Math Biosci, 208, 312-324.
World Health Organization. (n.d). WHO’s
role, mandate and activities to counter
the world drug problem: A public health
perspective. Retrieved from https://www.
who.int/substance_abuse/publications/
drug_role_mandate.pdf?ua=1
Xu, M. (2016). Human rights and Duterte’s war
on drugs. Council on Foreign Relations.
Retrieved from https://www.cfr.org/
interview/human-rights-and-duterteswar-drugs
Published
2021-01-01

Most read articles by the same author(s)